Protective Effects of Non-Anticoagulant Activated Protein C Variant (D36A/L38D/A39V) in a Murine Model of Ischaemic Stroke
نویسندگان
چکیده
Ischaemic stroke is caused by occlusive thrombi in the cerebral vasculature. Although tissue-plasminogen activator (tPA) can be administered as thrombolytic therapy, it has major limitations, which include disruption of the blood-brain barrier and an increased risk of bleeding. Treatments that prevent or limit such deleterious effects could be of major clinical importance. Activated protein C (APC) is a natural anticoagulant that regulates thrombin generation, but also confers endothelial cytoprotective effects and improved endothelial barrier function mediated through its cell signalling properties. In murine models of stroke, although APC can limit the deleterious effects of tPA due to its cell signalling function, its anticoagulant actions can further elevate the risk of bleeding. Thus, APC variants such as APC(5A), APC(Ca-ins) and APC(36-39) with reduced anticoagulant, but normal signalling function may have therapeutic benefit. Human and murine protein C (5A), (Ca-ins) and (36-39) variants were expressed and characterised. All protein C variants were secreted normally, but 5-20% of the protein C (Ca-ins) variants were secreted as disulphide-linked dimers. Thrombin generation assays suggested reductions in anticoagulant function of 50- to 57-fold for APC(36-39), 22- to 27-fold for APC(Ca-ins) and 14- to 17-fold for APC(5A). Interestingly, whereas human wt APC, APC(36-39) and APC(Ca-ins) were inhibited similarly by protein C inhibitor (t½ - 33 to 39 mins), APC(5A) was inactivated ~9-fold faster (t½ - 4 mins). Using the murine middle cerebral artery occlusion ischaemia/repurfusion injury model, in combination with tPA, APC(36-39), which cannot be enhanced by its cofactor protein S, significantly improved neurological scores, reduced cerebral infarct area by ~50% and reduced oedema ratio. APC(36-39) also significantly reduced bleeding in the brain induced by administration of tPA, whereas wt APC did not. If our data can be extrapolated to clinical settings, then APC(36-39) could represent a feasible adjunctive therapy for ischaemic stroke.
منابع مشابه
Multifunctional specificity of the protein C/activated protein C Gla domain.
Activated protein C (APC) has potent anticoagulant and anti-inflammatory properties that are mediated in part by its interactions with its cofactor protein S and the endothelial cell protein C receptor (EPCR). The protein C/APC Gla domain is implicated in both interactions. We sought to identify how the protein C Gla domain enables specific protein-protein interactions in addition to its conser...
متن کاملDissociation of activated protein C functions by elimination of protein S cofactor enhancement.
Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function ...
متن کاملCytoprotective-selective activated protein C therapy for ischaemic stroke.
Despite years of research and efforts to translate stroke research to clinical therapy, ischaemic stroke remains a major cause of death, disability, and diminished quality of life. Primary and secondary preventive measures combined with improved quality of care have made significant progress. However, no novel drug for ischaemic stroke therapy has been approved in the past decade. Numerous stud...
متن کاملActivated protein C β-glycoform promotes enhanced noncanonical PAR1 proteolysis and superior resistance to ischemic injury.
Activated protein C (APC) is an anticoagulant protease that initiates cell signaling via protease-activated receptor 1 (PAR1) to regulate vascular integrity and inflammatory response. In this study, a recombinant APC variant (APC(N329Q)) mimicking the naturally occurring APC-β plasma glycoform was found to exhibit superior PAR1 proteolysis at a cleavage site that selectively mediates cytoprotec...
متن کاملSpecies-specific anticoagulant and mitogenic activities of murine protein S.
BACKGROUND The protein C pathway down-regulates thrombin generation and promotes cytoprotection during inflammation and stress. In preclinical studies using models of murine injury (e.g., sepsis and ischemic stroke), murine protein S may be required because of restrictive species specificity. DESIGN AND METHODS We prepared and characterized recombinant murine protein S using novel coagulation...
متن کامل